TensorFlow

The following shows an example code for adding new layers to SOL’s TensorFlow frontend.

import sol.tensorflow

def parse_OperationXYZ(node, scope):
	return tuple(scope[i.unique()] for i in node.inputs())

def my_handler(node, scope):
	input, a, b = sol.tensorflow.parse_inputs(node, scope)
	c           = node.get_attr('whatever')
	output,     = node.outputs
	x           = sol.hlir.Tensor(my_backend_lib.add_my_layer(input, a, b, c))
	sol.tensorflow.assign(scope, output, x)

sol.tensorflow.add_handler("not_implemented_by_sol", my_handler)

my_handler gets called with handler(node, scope), where node is a tf.Graph node and scope a dictionary of all variables visible to this node. sol.tensorflow.parse_inputs(node, scope) dereferences all inputs. sol.tensorflow.assign(scope, output, x) assigns the resulting Tensor x to the node’s output within the current scope.

sol.tensorflow.add_handler(...) is used to assign your handler to the given TF node type.